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Abstract 

Artificial Intelligence (AI) has emerged as a significant advancement in healthcare, 
particularly in medical imaging, where it assists in detecting abnormalities, segmenting 
lesions, and predicting conditions. However, comparative analyses between conventional 
object detection models and emerging vision-language architectures remain limited, 
especially for brain tumour detection. This study addresses this gap by comparing two 
algorithms: YOLOv10, a widely used object detection model, and PaliGemma2, a newer vision-
language model that integrates image and text modalities. Despite the rapid development of 
AI tools, comparative studies evaluating their effectiveness and public acceptance in 
healthcare remain scarce. Therefore, this study aims to evaluate the technical performance 
of AI algorithms in brain tumour detection and to assess societal readiness for their adoption 
in Bosnia and Herzegovina. Performance was assessed using a labelled magnetic resonance 
imaging (MRI) dataset and evaluated through accuracy and precision metrics, while public 
perception was analysed through a survey involving 344 participants. The results indicate 
that YOLOv10 consistently outperformed PaliGemma2, likely due to its optimisation for object 
detection tasks, whereas PaliGemma2’s multimodal design required greater computational 
resources. The findings from the survey revealed positive public acceptance of AI in 
healthcare, accompanied by calls for greater education, careful implementation, and 
appropriate professional training. Overall, results from this study provide empirical evidence 
supporting the practical applications of AI models in medical imaging and highlight the 
importance of integrating ethical and educational frameworks for AI adoption in developing 
healthcare systems, such as in Bosnia and Herzegovina. 

 

Keywords: Artificial Intelligence, Brain Tumour Detection, Medical Imaging, PaliGemma2, 

Vision-Language Models, YOLOv10 

 
1.0 Introduction 

Brain tumours are abnormal cell growths that disrupt brain function, often 
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leading to severe neurological impairment or death [1]. Early and accurate 

detection is cardinal for effective treatment planning and improving patient 
outcomes. Magnetic resonance imaging (MRI) and computed tomography (CT) 
scans remain the standard imaging modalities; however, manual 

interpretation is often time-consuming, subjective, and susceptible to 
diagnostic variability. These underscore the important requirement for 
automated and reliable diagnostic support. 

 
Artificial Intelligence (AI), particularly machine learning (ML) and deep 
learning (DL), has significantly advanced medical imaging by improving the 
speed and accuracy of tumour detection and classification [2]. Convolutional 
Neural Networks (CNNs) are widely used for imaging tasks such as 
classification and segmentation, supported further by transfer learning 
methods that improve performance on smaller datasets [3], [4], [5], [6]. Object 
Detection Models (ODMs) such as the YOLO series have shown strong 
performance in real-time tumour localisation, with YOLOv10 offering 
enhanced detection of small and overlapping abnormalities due to its 
optimised architecture [6], [7], [8], [9], [10]. 

 
In Bosnia and Herzegovina (BiH), the burden of brain tumours is increasing. 
In 2022 and 2023, malignant brain tumours ranked among the top ten causes 
of cancer-related deaths in the Federation of Bosnia and Herzegovina [11], 
[12]. However, fragmented healthcare data systems limit nationwide visibility. 
Access to advanced imaging is further constrained by long waiting times in 
public hospitals and high costs in private institutions, slowing the wider 
adoption of AI-assisted diagnostic tools. This technological gap creates a 
pressing need to evaluate AI solutions in both technical performance and 
societal acceptability within the country. 

 
Although AI models such as CNNs and YOLO have achieved strong results, 
limited studies have compared traditional object detection models with 
emerging VLMs for brain tumour detection using MRI data, particularly in 
resource-constrained or developing healthcare systems. Furthermore, there 
is a lack of research exploring public perception and societal readiness for AI-
based healthcare tools in Bosnia and Herzegovina, despite their increasing 
relevance to clinical workflows.  

 
Given the rapid evolution of both object detection and vision–language 
models, this study compares YOLOv10 and PaliGemma2 for brain tumour 
detection using MRI images and examines public perception of AI’s role in 
healthcare in Bosnia and Herzegovina. The novelty of this study lies in 
combining a technical model comparison with an assessment of societal 
acceptance, providing an integrated perspective that is rarely addressed in 

current literature. The main contributions include: (1) a performance 
benchmark between YOLOv10 and PaliGemma2 for tumour detection, (2) an 
analysis of the computational feasibility of VLMs in medical imaging, and (3) 
empirical insights into public attitudes towards AI in a developing healthcare 
system. 
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2.0  Methodology 

2.1 Dataset Description 

This study utilised the MRI for Brain Tumour with Bounding Boxes dataset 

from Kaggle, consisting of 5,249 MRI images annotated with bounding boxes 
in YOLO format [13]. The dataset was divided into a training set (90%) and a 
validation set (10%), covering four classes: Glioma, Meningioma, Pituitary, 
and No Tumour. Images were taken from sagittal, axial, and coronal planes, 
providing variability in anatomical visualisation.  

Table 1 summarises the dataset distribution across four tumour categories in 
both training and validation subsets. 

 
Table 1: Dataset comparison 

Class Training Images Validation Images Total Images 

Glioma 1,153 136 1,289 

Meningioma 1,449 140 1,589 

No Tumour 711 100 811 

Pituitary 1,424 136 1,560 

Total 4,737 512 5,249 

 

Class distribution was imbalanced, with Meningioma and Pituitary tumours 
dominating, and the No Tumour class considerably underrepresented. Most 
bounding boxes were very small (normalised areas below 0.1), posing a 

challenge for tumour detection. Figure 1(a) and Figure 1(b) illustrate the 
distribution of bounding box sizes in the training and validation sets, showing 
similar patterns of small-object dominance across both subsets. Most 
tumours occupy a very small portion of the image, making localisation 
challenging. 
 

These findings underscore the inherent difficulty of detecting small tumours, 
which are not only more challenging to identify but also require the model to 
have a high degree of sensitivity and localisation precision. 
 

           

     (a)                (b) 

Figure 1: Distribution of normalised bounding box sizes in (a) the training 
set and (b) the validation set 
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Bounding box annotations and class labels were used for both detection and 
classification tasks. Figure 2 (a) – (d) presents examples of the MRI images for 
each tumour category, highlighting typical bounding box appearances and the 
diversity of scanning orientations. These samples illustrate the dataset 
variability essential for training optimisable models. 

 

 

             (a)                       (b)                        (c)                       (d) 

Figure 2: Examples of MRI images with bounding box annotations for each 
tumour category: (a) Glioma, (b) Meningioma, (c) No Tumour, and  

(d) Pituitary 

 

The sample images shown in Figure (a) – (d) illustrate the diversity in tumour 
types, sizes, and anatomical locations, underscoring the richness of the 
dataset. These variations are important for training models that need to 
generalise across different medical scenarios, including both tumour 
detection and the accurate identification of healthy scans. The annotations 
created with bounding boxes and tumour labels provide the necessary 
framework for object detection models like YOLOv10 and PaliGemma to learn 
effectively. 
 

2.2 Selection of Models 

Two models were selected to balance reliability and innovation. YOLOv10, a 
real-time object detection model, was chosen for its efficiency and strong 
performance in small-object detection [7]. PaliGemma2, a newer vision–
language model, was selected due to its ability to integrate visual and textual 
information, offering a novel multimodal approach to brain tumour detection 
[14], [15]. Comparing these models enables a systematic evaluation of 
established object detection methods alongside emerging VLM-based 
pipelines. 
 

2.3 Model Architectures 

YOLOv10 introduces several innovations, including NMS-free training 
through a dual-assignment strategy and an efficiency-optimised architecture 

incorporating lightweight detection heads and rank-guided block allocation 
[16]. The architecture is designed to enhance detection accuracy for small 
tumours while maintaining low inference latency. Figure 3 provides the 
visualisation of YOLOv10’s dual-assignment mechanism, which enables the 
removal of Non-Maximum Suppression during training. 
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Figure 3: Visualisation of YOLOv10’s consistent dual-assignment strategy 
for NMS-free training [16], showing how positive and negative sample 

assignments stabilise the optimisation process 

 

PaliGemma2 combines a SigLIP vision encoder with a Gemma-2B language 
model, enabling cohesive multimodal processing of medical images and text 
prompts [15]. Figure 4 illustrates the staged architecture, including the vision 
encoder, cross-modal fusion, and transformer layers, which collectively 
support high-resolution visual understanding and contextual reasoning. 

 

Figure 4: PaliGemma2 architecture [15], demonstrating its modular 
combination of a SigLIP visual encoder and a Gemma-based language model 

to support multimodal feature integration 
 

2.4 Data Preprocessing 

Custom preprocessing pipelines were developed for each model to meet its 
specific input requirements. For YOLOv10, images were resized to 640 × 640 
pixels, grouped by class, and paired with YOLO-format bounding box labels. 
Missing annotations were manually added. For PaliGemma2, images were 
resized to 224 × 224 pixels, and YOLO annotations were converted into JSONL 
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format to incorporate both visual and textual descriptions. Visual validation 
checks ensured annotation consistency, and preprocessing aligned the 
dataset with the expected architecture of each model. 
 

2.5 Model Training  

YOLOv10 was initialised with COCO-pretrained weights and fine-tuned for 
150 epochs with a batch size of 16 using a Tesla T4 GPU. Training adopted a 
multi-task loss function incorporating localisation, classification, and 
confidence objectives, supported by dynamic learning rate scheduling. Fine-
tuning concentrated on higher network layers to adapt pretrained features to 
MRI-specific patterns. 
 

PaliGemma2 was trained in a JAX environment with images resized to 256 × 
256 pixels and normalised to the range [−1, 1]. Training combined text 
prediction and localisation losses, including cross-entropy and Intersection 
over Union (IoU)-based objectives. The visual encoder was frozen, while 
transformer layers were fine-tuned to support multimodal fusion. This 
enabled domain-specific adaptation for tumour detection and classification. 
 

2.6 Evaluation Metrics 

Model performance was assessed using both localisation and classification 
metrics. The IoU and Mean Average Precision (mAP) at IoU thresholds of 0.5 
and 0.5–0.95 measured detection performance. Classification metrics such as 

precision, recall, F1-score, and confusion matrices were evaluated for tumour 
type prediction. Training and validation loss curves were monitored to assess 
convergence and detect overfitting. 
 

2.7 Software and Tools 

All experiments were conducted in Python 3.10 using Kaggle Notebooks 
equipped with Tesla T4 GPUs. YOLOv10 was implemented using the 
Ultralytics YOLO framework (v8.3.15), and PaliGemma2 fine-tuning was 
performed using JAX and the BigVision library. Supporting libraries included 
NumPy for numerical computation, Matplotlib for visualisation, 
Albumentations for data augmentation, TensorBoard for monitoring training 
progress, and Scikit-Learn for calculating classification metrics. 
 

3.0 Results and Discussion 

3.1 YOLOv10: Model Performance 

YOLOv10 achieved strong results in brain tumour detection and 
classification, reaching a precision of 95.3%, a recall of 94.4%, and an F1-
score of 94.8%. Detection performance was also high, with mAP@50 at 96.5% 

and mAP@50-95 at 81.2%. Figure 5 illustrates the confusion matrix, showing 
minimal misclassification and clear separation between tumour classes. 
Similar findings were reported by Priyadharshini et al. (2025) [17], who 
demonstrated that YOLO variants perform robustly in MRI-based tumour 
interpretation, where YOLOv11 demonstrated superior performance from 
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other algorithms, achieving 96.22% classification accuracy.  

 

 

Figure 5: The confusion matrix shows YOLOv10’s stability across all four 
tumour types, indicating strong feature extraction and localisation capability 

 

Training and validation losses shown in Figure 6 decreased consistently over 
150 epochs, reflecting effective learning. A slight increase in validation DFL 

loss toward later epochs suggests minor overfitting risks, but overall 
generalisation remained strong.  

 

 

Figure 6: Training and validation loss curves for YOLOv10 indicate stable 

convergence and effective learning 

 

Loss curves indicate well-converged optimisation, demonstrating YOLOv10’s 
suitability for real-time, high-precision clinical imaging tasks. Similar 
convergence characteristics are reported by Sapkota et al. (2024)[7], who 
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highlighted YOLO models’ robustness for medical image detection tasks. 

 

3.2 PaliGemma2: Model Performance 

PaliGemma2 achieved a precision of 92.5%, a recall of 84.7%, and an F1-score 
of 88.3%. In the detection task, the model reached a mAP@50 of 89.6% and 
mAP@50-95 of 62.9%. The confusion matrix in Figure 7 highlights strong 
classification performance for Meningioma, Pituitary, and No Tumour classes, 
although some confusion was noted for Glioma. 

 

 

Figure 7: Confusion matrix for PaliGemma2, showing stronger performance 
on well-defined tumour types and more uncertainty in Glioma classification 

 
Training and validation loss curves shown in Figure 8 demonstrated 
consistent downward trends, stabilising after initial fluctuations, indicating 
effective model learning. Although PaliGemma2’s results were lower than 
YOLOv10’s, they demonstrate strong potential for applications that integrate 
visual and textual information in medical imaging. 
 

 

Figure 8: Training and validation losses for PaliGemma2, showing effective 
optimisation despite higher computational demands 
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3.3 Comparison Between YOLOv10 and PaliGemma2 

As summarised in Table 2, YOLOv10 outperformed PaliGemma2 across all 
evaluated metrics. YOLOv10 achieved higher precision, recall, F1-score, and 
detection accuracy, while requiring less training time. This aligns with 
previous findings of Ragab et al. from 2024 [9] that the YOLO architecture 
remains highly competitive for small-object localisation in medical imaging. 
PaliGemma2, however, demonstrated strong potential despite being a general-
purpose VLM. Its respectable performance suggests adaptability for medical 
image analysis, supporting findings by Steiner et al. from 2024 [15], who also 
reported effective domain transfer using PaliGemma-based models. In 
contrast, Klein et al. (2024) [18] in their study note limitations of VLMs in 
specialised tasks due to hallucination risk and computational burden, which 
matches the challenges observed in this paper. 

 
Table 2: Result metrics comparison between YOLOv10 and PaliGemma2 

Metric YOLOv10 PaliGemma2 

Precision 95.3 % 92.5 % 

Recall 94.4 % 84.7 % 

F1-Score 94.8 % 88.3 % 

mAP50 96.7 % 89.6% 

mAP50-95 81.2 % 62. 9 % 

Training Epochs 150 epochs 477 epochs 

Full Training Time 7.538 h 8.175 h 

 

3.4 Interpretation of Results 

This study evaluated the performance of two fundamentally different models, 
YOLOv10 and PaliGemma2, for brain tumour detection and classification. As 
expected, YOLOv10 achieved superior performance due to its architecture 
being specialised for object detection tasks, showing strong precision (95.3%), 
recall (94.4%), and F1-score (94.8%). Its real-time processing capabilities and 
efficiency with high-resolution images make it a strong candidate for clinical 
applications requiring rapid diagnostic support. 
 

PaliGemma2, although not initially designed for object detection, 
demonstrated promising adaptability. Despite its higher memory demands 
and the need for downscaled inputs (244x244 pixels), it achieved respectable 
performance (Precision 92.5%, Recall 84.7%). Its ability to integrate visual and 
textual information suggests broader potential for future tasks such as 
automated radiology reporting. However, improvements in memory 
management and optimisation would be necessary to fully exploit its 

capabilities. 
 

Recent studies provide both supporting and contrasting perspectives on the 
results obtained in this work. Priyadharshini et al. (2025) [17] reported that 
YOLO-based models achieve strong accuracy on MRI tumour datasets, 
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aligning with our finding that YOLOv10 excels in localisation tasks due to its 
detection-oriented architecture. In contrast, Elboardy et al. (2025) [19] 
benchmarked multiple vision–language models, including PaliGemma2, for 
radiology-report generation from multisequence MRI and found substantial 
performance variability across VLM families and model sizes. Their results 
showed that while large, specialised VLMs can match or exceed domain-
specific baselines in radiological reasoning, smaller models such as 
PaliGemma2 lag behind more advanced VLMs and remain less reliable for 
clinical decision support. This partially contradicts our findings, as 
PaliGemma2 performed competitively in tumour detection despite being a 
general-purpose model. Together, these studies suggest that although 
YOLOv10 remains the stronger option for direct tumour localisation, VLM 
performance is highly dependent on scale, domain specialisation, and task 
design, indicating that more advanced versions of PaliGemma-based models 
may achieve stronger performance in future medical imaging applications. 
 

4.0 Conclusion 

This study successfully compared the performance of YOLOv10 and 
PaliGemma2 for brain tumour detection and classification using MRI data. 
The objectives were achieved by demonstrating that YOLOv10 consistently 
delivered superior localisation and classification performance, confirming its 
suitability for real-time clinical integration. PaliGemma2 showed promising 
adaptability despite being a general-purpose VLM, contributing novel 

evidence that such models can be fine-tuned for specialised medical imaging 
tasks. This research made three main contributions. From a technical 
perspective, it provided the first comparative evaluation of YOLOv10 and 
PaliGemma2 for MRI-based tumour detection, which clarified the trade-offs 
between specialised and multimodal AI systems. In terms of methodological, 
it successfully demonstrated that Vision–Language Models could be adapted 
for tumour classification, expanding the potential of VLMs within multimodal 
radiology workflows. Finally, from a societal viewpoint, it conducted a public 
perception survey in Bosnia and Herzegovina, which revealed cautious 
optimism towards AI in healthcare while highlighting concerns regarding 
oversight, data privacy, and the need for professional training. In addition to 
these contributions, the study also addressed ethical considerations, 
including privacy protection, interpretability, and the importance of human 
oversight, emphasising that AI should support rather than replace clinical 
decision-making. The survey findings further underscored the necessity for 
public education, infrastructure improvement, and training of healthcare 
professionals before the large-scale deployment of AI tools in Bosnia and 
Herzegovina. 
 

Based on these findings, future research should explore advanced fine-tuning 

of VLMs like PaliGemma2 for radiology report generation, cross-modal 
reasoning, and complex diagnostic tasks. Apart from that, researchers should 
also pursue access to richer MRI datasets through collaborations with 
hospitals to improve generalisability. This would develop effective integration 
strategies for AI within Bosnia’s healthcare institutions, including workflow 
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optimisation and policy development. Finally, future work should conduct 
several longitudinal studies to analyse the positive impact of AI tools on 
diagnostic accuracy, clinical efficiency, and patient outcomes. These findings 
suggest meaningful and potential opportunities for clinical adoption, 
particularly in Bosnia and Herzegovina, where radiology workflows are often 
resource-constrained. YOLOv10’s strong accuracy and efficiency suggest 
near-term commercial viability for clinical decision-support systems, 
especially in resource-constrained environments. PaliGemma2, with further 
optimisation, shows long-term potential for multimodal radiology platforms 
capable of combining imaging, text, and patient metadata in a single 
diagnostic pipeline. 
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