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Abstract

Artificial Intelligence (Al) has emerged as a significant advancement in healthcare,
particularly in medical imaging, where it assists in detecting abnormalities, segmenting
lesions, and predicting conditions. However, comparative analyses between conventional
object detection models and emerging vision-language architectures remain limited,
especially for brain tumour detection. This study addresses this gap by comparing two
algorithms: YOLOvV10, a widely used object detection model, and PaliGemma?2, a newer vision-
language model that integrates image and text modalities. Despite the rapid development of
Al tools, comparative studies evaluating their effectiveness and public acceptance in
healthcare remain scarce. Therefore, this study aims to evaluate the technical performance
of Al algorithms in brain tumour detection and to assess societal readiness for their adoption
in Bosnia and Herzegovina. Performance was assessed using a labelled magnetic resonance
imaging (MRI) dataset and evaluated through accuracy and precision metrics, while public
perception was analysed through a survey involving 344 participants. The results indicate
that YOLOvV10 consistently outperformed PaliGemma?2, likely due to its optimisation for object
detection tasks, whereas PaliGemma?2’s multimodal design required greater computational
resources. The findings from the survey revealed positive public acceptance of Al in
healthcare, accompanied by calls for greater education, careful implementation, and
appropriate professional training. Overall, results from this study provide empirical evidence
supporting the practical applications of Al models in medical imaging and highlight the
importance of integrating ethical and educational frameworks for Al adoption in developing
healthcare systems, such as in Bosnia and Herzegovina.

Keywords: Artificial Intelligence, Brain Tumour Detection, Medical Imaging, PaliGemma?2,
Vision-Language Models, YOLOv10

1.0 Introduction
Brain tumours are abnormal cell growths that disrupt brain function, often
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leading to severe neurological impairment or death [1]. Early and accurate
detection is cardinal for effective treatment planning and improving patient
outcomes. Magnetic resonance imaging (MRI) and computed tomography (CT)
scans remain the standard imaging modalities; however, manual
interpretation is often time-consuming, subjective, and susceptible to
diagnostic variability. These underscore the important requirement for
automated and reliable diagnostic support.

Artificial Intelligence (Al), particularly machine learning (ML) and deep
learning (DL), has significantly advanced medical imaging by improving the
speed and accuracy of tumour detection and classification [2]. Convolutional
Neural Networks (CNNs) are widely used for imaging tasks such as
classification and segmentation, supported further by transfer learning
methods that improve performance on smaller datasets [3], [4], [5], [6]. Object
Detection Models (ODMs) such as the YOLO series have shown strong
performance in real-time tumour localisation, with YOLOv10 offering
enhanced detection of small and overlapping abnormalities due to its
optimised architecture [6], [7], [8], [9], [10].

In Bosnia and Herzegovina (BiH), the burden of brain tumours is increasing.
In 2022 and 2023, malignant brain tumours ranked among the top ten causes
of cancer-related deaths in the Federation of Bosnia and Herzegovina [11],
[12]. However, fragmented healthcare data systems limit nationwide visibility.
Access to advanced imaging is further constrained by long waiting times in
public hospitals and high costs in private institutions, slowing the wider
adoption of Al-assisted diagnostic tools. This technological gap creates a
pressing need to evaluate Al solutions in both technical performance and
societal acceptability within the country.

Although AI models such as CNNs and YOLO have achieved strong results,
limited studies have compared traditional object detection models with
emerging VLMs for brain tumour detection using MRI data, particularly in
resource-constrained or developing healthcare systems. Furthermore, there
is a lack of research exploring public perception and societal readiness for Al-
based healthcare tools in Bosnia and Herzegovina, despite their increasing
relevance to clinical workflows.

Given the rapid evolution of both object detection and vision-language
models, this study compares YOLOv10 and PaliGemma2 for brain tumour
detection using MRI images and examines public perception of AI’s role in
healthcare in Bosnia and Herzegovina. The novelty of this study lies in
combining a technical model comparison with an assessment of societal
acceptance, providing an integrated perspective that is rarely addressed in
current literature. The main contributions include: (1) a performance
benchmark between YOLOv10 and PaliGemma?2 for tumour detection, (2) an
analysis of the computational feasibility of VLMs in medical imaging, and (3)
empirical insights into public attitudes towards Al in a developing healthcare
system.
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2.0 Methodology

2.1 Dataset Description

This study utilised the MRI for Brain Tumour with Bounding Boxes dataset
from Kaggle, consisting of 5,249 MRI images annotated with bounding boxes
in YOLO format [13]. The dataset was divided into a training set (90%) and a
validation set (10%), covering four classes: Glioma, Meningioma, Pituitary,
and No Tumour. Images were taken from sagittal, axial, and coronal planes,
providing variability in anatomical visualisation.

Table I summarises the dataset distribution across four tumour categories in
both training and validation subsets.

Table 1: Dataset comparison

Class Training Images | Validation Images Total Images
Glioma 1,153 136 1,289
Meningioma 1,449 140 1,589
No Tumour 711 100 811
Pituitary 1,424 136 1,560
Total 4,737 512 5,249

Class distribution was imbalanced, with Meningioma and Pituitary tumours
dominating, and the No Tumour class considerably underrepresented. Most
bounding boxes were very small (normalised areas below 0.1), posing a
challenge for tumour detection. Figure 1(a) and Figure 1(b) illustrate the
distribution of bounding box sizes in the training and validation sets, showing
similar patterns of small-object dominance across both subsets. Most
tumours occupy a very small portion of the image, making localisation
challenging.

These findings underscore the inherent difficulty of detecting small tumours,
which are not only more challenging to identify but also require the model to
have a high degree of sensitivity and localisation precision.
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Figure 1: Distribution of normalised bounding box sizes in (a) the training
set and (b) the validation set
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Bounding box annotations and class labels were used for both detection and
classification tasks. Figure 2 (a) — (d) presents examples of the MRI images for
each tumour category, highlighting typical bounding box appearances and the
diversity of scanning orientations. These samples illustrate the dataset
variability essential for training optimisable models.

Glioma No Tumor

Meningioma Pituitary

() (b) (©) (d)

Figure 2: Examples of MRI images with bounding box annotations for each
tumour category: (a) Glioma, (b) Meningioma, (c) No Tumour, and

(d) Pituitary

The sample images shown in Figure (a) — (d) illustrate the diversity in tumour
types, sizes, and anatomical locations, underscoring the richness of the
dataset. These variations are important for training models that need to
generalise across different medical scenarios, including both tumour
detection and the accurate identification of healthy scans. The annotations
created with bounding boxes and tumour labels provide the necessary
framework for object detection models like YOLOv10 and PaliGemma to learn
effectively.

2.2 Selection of Models

Two models were selected to balance reliability and innovation. YOLOv10, a
real-time object detection model, was chosen for its efficiency and strong
performance in small-object detection [7]. PaliGemma2, a newer vision-
language model, was selected due to its ability to integrate visual and textual
information, offering a novel multimodal approach to brain tumour detection
[14], [15]. Comparing these models enables a systematic evaluation of
established object detection methods alongside emerging VLM-based
pipelines.

2.3 Model Architectures

YOLOv10 introduces several innovations, including NMS-free training
through a dual-assignment strategy and an efficiency-optimised architecture
incorporating lightweight detection heads and rank-guided block allocation
[16]. The architecture is designed to enhance detection accuracy for small
tumours while maintaining low inference latency. Figure 3 provides the
visualisation of YOLOv10’s dual-assignment mechanism, which enables the
removal of Non-Maximum Suppression during training.
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Figure 3: Visualisation of YOLOv10’s consistent dual-assignment strategy
for NMS-free training [16], showing how positive and negative sample
assignments stabilise the optimisation process
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PaliGemma2 combines a SigLIP vision encoder with a Gemma-2B language
model, enabling cohesive multimodal processing of medical images and text
prompts [15]. Figure 4 illustrates the staged architecture, including the vision
encoder, cross-modal fusion, and transformer layers, which collectively
support high-resolution visual understanding and contextual reasoning.
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Figure 4: PaliGemma?2 architecture [15], demonstrating its modular
combination of a SigLIP visual encoder and a Gemma-based language model
to support multimodal feature integration

2.4 Data Preprocessing

Custom preprocessing pipelines were developed for each model to meet its
specific input requirements. For YOLOv10, images were resized to 640 x 640
pixels, grouped by class, and paired with YOLO-format bounding box labels.
Missing annotations were manually added. For PaliGemma?2, images were
resized to 224 x 224 pixels, and YOLO annotations were converted into JSONL
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format to incorporate both visual and textual descriptions. Visual validation
checks ensured annotation consistency, and preprocessing aligned the
dataset with the expected architecture of each model.

2.5 Model Training

YOLOvV10 was initialised with COCO-pretrained weights and fine-tuned for
150 epochs with a batch size of 16 using a Tesla T4 GPU. Training adopted a
multi-task loss function incorporating localisation, -classification, and
confidence objectives, supported by dynamic learning rate scheduling. Fine-
tuning concentrated on higher network layers to adapt pretrained features to
MRI-specific patterns.

PaliGemma2 was trained in a JAX environment with images resized to 256 x
256 pixels and normalised to the range [-1, 1]. Training combined text
prediction and localisation losses, including cross-entropy and Intersection
over Union (IoU)-based objectives. The visual encoder was frozen, while
transformer layers were fine-tuned to support multimodal fusion. This
enabled domain-specific adaptation for tumour detection and classification.

2.6 Evaluation Metrics

Model performance was assessed using both localisation and classification
metrics. The IoU and Mean Average Precision (mAP) at IoU thresholds of 0.5
and 0.5-0.95 measured detection performance. Classification metrics such as
precision, recall, F1-score, and confusion matrices were evaluated for tumour
type prediction. Training and validation loss curves were monitored to assess
convergence and detect overfitting.

2.7 Software and Tools

All experiments were conducted in Python 3.10 using Kaggle Notebooks
equipped with Tesla T4 GPUs. YOLOv10 was implemented using the
Ultralytics YOLO framework (v8.3.15), and PaliGemma2 fine-tuning was
performed using JAX and the BigVision library. Supporting libraries included
NumPy for numerical computation, Matplotlib for visualisation,
Albumentations for data augmentation, TensorBoard for monitoring training
progress, and Scikit-Learn for calculating classification metrics.

3.0 Results and Discussion
3.1 YOLOv10: Model Performance

YOLOv10 achieved strong results in brain tumour detection and
classification, reaching a precision of 95.3%, a recall of 94.4%, and an F1-
score of 94.8%. Detection performance was also high, with mAP@50 at 96.5%
and mAP@S0-95 at 81.2%. Figure 5 illustrates the confusion matrix, showing
minimal misclassification and clear separation between tumour classes.
Similar findings were reported by Priyadharshini et al. (2025) [17], who
demonstrated that YOLO variants perform robustly in MRI-based tumour
interpretation, where YOLOv11l demonstrated superior performance from
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other algorithms, achieving 96.22% classification accuracy.
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Figure 5: The confusion matrix shows YOLOv10’s stability across all four
tumour types, indicating strong feature extraction and localisation capability

Training and validation losses shown in Figure 6 decreased consistently over
150 epochs, reflecting effective learning. A slight increase in validation DFL
loss toward later epochs suggests minor overfitting risks, but overall
generalisation remained strong.
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Figure 6: Training and validation loss curves for YOLOv10 indicate stable
convergence and effective learning

Loss curves indicate well-converged optimisation, demonstrating YOLOv10’s
suitability for real-time, high-precision clinical imaging tasks. Similar
convergence characteristics are reported by Sapkota et al. (2024)[7], who
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highlighted YOLO models’ robustness for medical image detection tasks.

3.2 PaliGemma2: Model Performance

PaliGemma?2 achieved a precision of 92.5%, a recall of 84.7%, and an F1-score
of 88.3%. In the detection task, the model reached a mAP@50 of 89.6% and
mAP@S0-95 of 62.9%. The confusion matrix in Figure 7 highlights strong
classification performance for Meningioma, Pituitary, and No Tumour classes,
although some confusion was noted for Glioma.
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Figure 7: Confusion matrix for PaliGemma?2, showing stronger performance
on well-defined tumour types and more uncertainty in Glioma classification

Training and validation loss curves shown in Figure 8 demonstrated
consistent downward trends, stabilising after initial fluctuations, indicating
effective model learning. Although PaliGemma?2’s results were lower than
YOLOv10’s, they demonstrate strong potential for applications that integrate
visual and textual information in medical imaging.

Waining Loss Over Time Validation Loss Over Time

Vabtazen Last

Figure 8: Training and validation losses for PaliGemmaZ2, showing effective
optimisation despite higher computational demands
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3.3 Comparison Between YOLOv10 and PaliGemma?2

As summarised in Table 2, YOLOv10 outperformed PaliGemmaZ2 across all
evaluated metrics. YOLOv10 achieved higher precision, recall, F1-score, and
detection accuracy, while requiring less training time. This aligns with
previous findings of Ragab et al. from 2024 [9] that the YOLO architecture
remains highly competitive for small-object localisation in medical imaging.
PaliGemma2, however, demonstrated strong potential despite being a general-
purpose VLM. Its respectable performance suggests adaptability for medical
image analysis, supporting findings by Steiner et al. from 2024 [15], who also
reported effective domain transfer using PaliGemma-based models. In
contrast, Klein et al. (2024) [18] in their study note limitations of VLMs in
specialised tasks due to hallucination risk and computational burden, which
matches the challenges observed in this paper.

Table 2: Result metrics comparison between YOLOv10 and PaliGemma?2

Metric YOLOv10 PaliGemma?2
Precision 95.3 % 92.5 %
Recall 94 .4 % 84.7 %
F1-Score 94.8 % 88.3 %
mAP50 96.7 % 89.6%
mAPS50-95 81.2 % 62.9 %

Training Epochs 150 epochs 477 epochs
Full Training Time 7.538 h 8.175h

3.4 Interpretation of Results

This study evaluated the performance of two fundamentally different models,
YOLOvV10 and PaliGemmaZ2, for brain tumour detection and classification. As
expected, YOLOv10 achieved superior performance due to its architecture
being specialised for object detection tasks, showing strong precision (95.3%),
recall (94.4%), and F1-score (94.8%). Its real-time processing capabilities and
efficiency with high-resolution images make it a strong candidate for clinical
applications requiring rapid diagnostic support.

PaliGemma2, although not initially designed for object detection,
demonstrated promising adaptability. Despite its higher memory demands
and the need for downscaled inputs (244x244 pixels), it achieved respectable
performance (Precision 92.5%, Recall 84.7%). Its ability to integrate visual and
textual information suggests broader potential for future tasks such as
automated radiology reporting. However, improvements in memory
management and optimisation would be necessary to fully exploit its
capabilities.

Recent studies provide both supporting and contrasting perspectives on the
results obtained in this work. Priyadharshini et al. (2025) [17] reported that
YOLO-based models achieve strong accuracy on MRI tumour datasets,

20
Politeknik & Kolej Komuniti Journal of Engineering and Technology, Vol. 10, No. 2, 2025
eISSN 0128-2883



Al in Brain Tumour Detection: Comparative Analysis of YOLOv10 and PaliGemma2 with Public Perception Insights in
Bosnia and Herzegovina

aligning with our finding that YOLOv10 excels in localisation tasks due to its
detection-oriented architecture. In contrast, Elboardy et al. (2025) [19]
benchmarked multiple vision-language models, including PaliGemma?2, for
radiology-report generation from multisequence MRI and found substantial
performance variability across VLM families and model sizes. Their results
showed that while large, specialised VLMs can match or exceed domain-
specific baselines in radiological reasoning, smaller models such as
PaliGemma?2 lag behind more advanced VLMs and remain less reliable for
clinical decision support. This partially contradicts our findings, as
PaliGemma2 performed competitively in tumour detection despite being a
general-purpose model. Together, these studies suggest that although
YOLOv10 remains the stronger option for direct tumour localisation, VLM
performance is highly dependent on scale, domain specialisation, and task
design, indicating that more advanced versions of PaliGemma-based models
may achieve stronger performance in future medical imaging applications.

4.0 Conclusion

This study successfully compared the performance of YOLOv10 and
PaliGemma?2 for brain tumour detection and classification using MRI data.
The objectives were achieved by demonstrating that YOLOv10 consistently
delivered superior localisation and classification performance, confirming its
suitability for real-time clinical integration. PaliGemmaZ2 showed promising
adaptability despite being a general-purpose VLM, contributing novel
evidence that such models can be fine-tuned for specialised medical imaging
tasks. This research made three main contributions. From a technical
perspective, it provided the first comparative evaluation of YOLOv10 and
PaliGemma?2 for MRI-based tumour detection, which clarified the trade-offs
between specialised and multimodal Al systems. In terms of methodological,
it successfully demonstrated that Vision—-Language Models could be adapted
for tumour classification, expanding the potential of VLMs within multimodal
radiology workflows. Finally, from a societal viewpoint, it conducted a public
perception survey in Bosnia and Herzegovina, which revealed cautious
optimism towards Al in healthcare while highlighting concerns regarding
oversight, data privacy, and the need for professional training. In addition to
these contributions, the study also addressed ethical considerations,
including privacy protection, interpretability, and the importance of human
oversight, emphasising that Al should support rather than replace clinical
decision-making. The survey findings further underscored the necessity for
public education, infrastructure improvement, and training of healthcare
professionals before the large-scale deployment of Al tools in Bosnia and
Herzegovina.

Based on these findings, future research should explore advanced fine-tuning
of VLMs like PaliGemma2 for radiology report generation, cross-modal
reasoning, and complex diagnostic tasks. Apart from that, researchers should
also pursue access to richer MRI datasets through collaborations with
hospitals to improve generalisability. This would develop effective integration
strategies for Al within Bosnia’s healthcare institutions, including workflow
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optimisation and policy development. Finally, future work should conduct
several longitudinal studies to analyse the positive impact of Al tools on
diagnostic accuracy, clinical efficiency, and patient outcomes. These findings
suggest meaningful and potential opportunities for clinical adoption,
particularly in Bosnia and Herzegovina, where radiology workflows are often
resource-constrained. YOLOv10’s strong accuracy and efficiency suggest
near-term commercial viability for clinical decision-support systems,
especially in resource-constrained environments. PaliGemma?2, with further
optimisation, shows long-term potential for multimodal radiology platforms
capable of combining imaging, text, and patient metadata in a single
diagnostic pipeline.
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