
Functional Requirements of a C-Programming Problem-Solving Application

Politeknik & Kolej Komuniti Journal of Life Long Learning, Vol.5, No.1, 2021
eISSN 2600-7738

Functional Requirements of a C-Programming Problem-
Solving Application

Nor Farahwahida Mohd Noor

Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak

norfarahwahida@gmail.com

 Aslina Saad
Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak

aslina@fskik.upsi.edu.my

 Azhani Hashim

Politeknik Sultan Azlan Shah, Behrang, Perak
azhani@psas.edu.my

Abstract
Problem-solving skill is very important to be inculcated among the students to produce
graduates that meet the demand of the Industrial Revolution 4.0 (IR4.0). However, novice

programmers often face difficulties to perform problem-solving before developing a computer

program. Therefore, there is a need to develop an application that can assist programmers in
problem-solving. It can be done with the application of computational thinking (CT) concepts.

The purpose of the application is to assist novice programmers to solve programming

problems, especially in C-programming. This study has elicited the functional requirements
of a problem-solving application. Requirement elicitation is an initial software development

process that determines the functional and non-functional requirements of the application.

However, this paper focuses only on the application’s functional requirements for the product
requirement scope. The requirement elicitation was done using a triangulation strategy with

qualitative approaches; semi-structured interview, document review, and an open-ended

survey among five expert programming lecturers in Malaysian Polytechnics. The finding from

this requirement elicitation has identified important elements that should be included in the
problem-solving application. These elements are the input-process-output (IPO) chart which

is combined with ten constructed scientific instructions and inquiries to facilitate the novices

in problem-solving. The implication of these findings shows that the problem-solving process
can be guided by the CT concepts to help students perform organized problem-solving and

well-prepared programming coding.

Keywords: requirement elicitation, programming problem-solving,

computational thinking.

1.0 Introduction
Industrial Revolution 4.0 (IR4.0) has driven a shift in industrial

operations towards automation and artificial intelligence. This revolution has

increased the demand for experts in the field of computer and software
engineering, especially engineers and programmers. It also has changed

industrial business models and employment trends, in which problem-solving
skill has become the main criteria for employment.

Programming has been a challenging course for novices due to their
lack of problem-solving skills. In programming learning, students need to
have problem-solving skills based on computational thinking (CT) concepts.

Functional Requirements of a C-Programming Problem-Solving Application

Politeknik & Kolej Komuniti Journal of Life Long Learning, Vol.5, No.1, 2021
eISSN 2600-7738

CT simulates the thinking in the way the computer is processing. Therefore,
the application of CT in problem-solving helps students in planning for the

problem-solving in the way a program is executed. However, novices need a
guide towards CT to plan the solution computationally so that they can clearly

define the needs of the program coding. To cultivate CT among the novices, a
problem-solving application needs to be developed. Therefore, the

requirements of the application need to be clearly defined so that it manages
to fulfil user needs towards the application.

This paper aims to elicit the functional requirements for a problem-

solving application based on CT concepts. The application's purpose is to
guide novices in performing problem-solving for basic scientific and

engineering problems. It can be done by using the input-process-output (IPO)
model with a set of scientific instructions and inquiries. This application is

targeting students of an introductory programming course who are novice
programmers. The intention is to help students plan for programming
solutions computationally to perform problem-solving and understand

programming better.

2.0 Literature review

Problem-solving is one of the most featuring skills needed for IR4.0 that
needs to be trained among engineering students (Chaka, 2020). Moreover,

this skill is one of the most sought by employers among graduate engineers
to meet the demand of IR4.0 (Subramaniam et al., 2020). At higher learning
institutions, problem-solving skill is essentially applied in the field of

engineering and computer science study, which includes introductory
programming courses (Malik et al., 2019). According to Chaka (2020), in

learning programming, problem-solving is a predominant generic skill that is
needed together with programming skills. However, the students often face

difficulties in performing problem-solving (Hashim et al., 2017).
The lack of problem-solving skills is one of the main reasons that makes

programming a challenging course for novices (Chung et al., 2016 &

Veerasamy et al., 2019). However, problem-solving can be done systematically
if the students have the skill to think in the way the computer is processing,

which is known as the computational thinking (CT) skill (Moon et al., 2020;
Svensson, 2020). CT is a universal skill that can be applied in solving

problems involving programming in the aspects of task decomposition,
abstraction, generalization, data structure and algorithm design (Riza et al.,
2019). It is currently one of the top-level key skills that should be acquired to

play in the industry (Saritepeci, 2020). Therefore, the CT concept should be
applied to foster problem-solving skills among the students.

According to Kwon (2017), several common mistakes in programming
were identified reflected from weak problem-solving strategies. During

problem-solving, the novices often face difficulties in understanding the
problem, planning solutions, designing and writing algorithms (Islam et al.,
2019). Planning solutions is a difficult task for the novices if they are unable

to decompose problems into functional data and procedures (Veerasamy et
al., 2019). Therefore, as suggested by the CT concepts, the problem needs to

be decomposed into manageable chunks to enable features extraction and
abstraction of important data (Moon et al., 2020).

Functional Requirements of a C-Programming Problem-Solving Application

Politeknik & Kolej Komuniti Journal of Life Long Learning, Vol.5, No.1, 2021
eISSN 2600-7738

In programming, functional data are represented by variables. A clear
understanding of the use of variables in programming is the basis of CT in

solutions planning and algorithm design (Hosanee & Rana, 2018). However,
the students tend to make mistakes that are identified mostly related to the

misuse of variables in programming (Kwon, 2017). Therefore, a clear
understanding of the role of variables to address data during problem-solving

is very important to build good program coding.
Computationally, the variables are the elements in programming that

address input and output data of a program with a descriptive name (Kohn,

2017). These variables can be determined if the students can extract
important data and information from a problem. According to Svensson

(2020), scientific instructions and inquiries can help to extract and identify
important data and information from the problem.

The data and information from a problem can be categorized into input
variables, processes, and output variables as described in the input-process-
output (IPO) model. The IPO model is widely used in information processing

for describing a process (Braunschweig, 2018). The combination of the IPO
model and CT can help to guide students to express solutions in

computational terms (Kwon, 2017). The use of the IPO model with the
integration of CT in scientific instructions and inquiries are identified to be

the elements that can assist problem-solving. Therefore, students will be able
to clarify inputs, processes, and outputs of a problem if they are guided by
scientific instructions and inquiries before they can proceed to design the

algorithm of their program, and thus help them to program better.
In today's era of learning that applies the concept of e-learning, a

problem-solving application is needed to help students solve problems more
strategically and systematically. Therefore, requirement elicitation should be

instigated as the first process to be done to develop this application (Supriya
et al., 2018). In this process, the preparation of the application development
is made, where the needs of the application are determined (Ramdhani et al.,

2018). The needs of the application comprise important elements of problem-
solving in programming which need to be defined to determine the product

requirement. This product requirement should describe the goals of the
application and the required features to achieve the goals. It also may include

details about user interactivity with the functionalities and features.

3.0 Methodology
To determine the functional requirements of the problem-solving

application, the requirement elicitation process is done by implementing the
triangulation strategy. The triangulation strategy which combines several

methods instead of only a single method is implemented to obtain high-quality
requirements (Williamson, 2018). This strategy helps to acquire

comprehensive findings where each method will complement the other (Saad
& Dawson, 2018). In this strategy, several qualitative methods are applied to
get an intensive analysis so that a detailed description of the desired result

can be achieved (Schoch, 2020). These methods are semi-structured
interviews, document review and open-ended surveys.

The requirement elicitation is carried out in three phases of these three
different approaches. The research begins in Phase 1 with semi-structured

Functional Requirements of a C-Programming Problem-Solving Application

Politeknik & Kolej Komuniti Journal of Life Long Learning, Vol.5, No.1, 2021
eISSN 2600-7738

interview sessions with the expert programming lecturers. Then, it proceeds
to Phase 2, which is the document review. After the documents are reviewed

and some findings were made, the research proceeds to Phase 3, which
involves an open-ended survey among the expert programming lecturers in

Malaysian Polytechnics.

3.1 Phase 1: Semi-structured interview

The semi-structured interview is carried out to investigate the
difficulties of the students in performing problem-solving for programming.
This method is applied as it allows the researchers to explore subjective

opinions and the expert’s experiences in teaching programming (Evans,
2018). It aims to discover the role of CT and IPO Model in problem-solving

from the view of experts programming lecturers. Besides, the researchers also
intend to find out how instructions and inquiries could help novices in

problem-solving. The interview topics are based on the literature review
findings which have been discussed earlier. This interview helps the
researchers to narrow down the scope in eliciting the functional requirements

of the problem-solving application.
The interview is carried out among Malaysian Polytechnic lecturers who

have been teaching the introductory programming course. Five expert
programming lecturers were identified and voluntarily participated in this

research. These lecturers are experience in teaching programming for more
than 10 years. The semi-structured interview is chosen to allow the
researcher to explore the respondents’ feedbacks and inputs on the topics

that have been outlined. The following are the topics that have been the
guideline during the semi-structured interview:

i. The students’ normal practice and difficulties in problem-solving.
ii. Elements that can assist students in performing problem-solving.

iii. IPO, CT, scientific instructions and inquiries application in problem-
solving.
The first topic is to get a clear view and understand the current

situation that usually happens during the problem-solving process in a
programming practical session. This topic stimulates the respondents in

suggesting several elements needed in the second topic of the interview. The
second topic helps the researchers to define the elements of problem-solving,

which could be the functional requirements of the application. The third topic
focuses on getting inputs and feedback from the respondents if the elements
suggested from the literature reviews are agreed to be applied as functional

requirements of the application.

3.2 Phase 2: Document review

Document review and analysis are often used with other qualitative
research methods in a triangulation strategy (Bowen, 2009). The purpose of

the document review is to support the functional requirement that has been
elicited during the interview. The document review is carried out to get an
idea of the types of problems that are usually being used in programming

practical activities. These practical activity documents need to be analysed to
construct a set of instructions and inquiries as a problem-solving guide for

these activities. This is supported by Bowen (2009) that documents may

Functional Requirements of a C-Programming Problem-Solving Application

Politeknik & Kolej Komuniti Journal of Life Long Learning, Vol.5, No.1, 2021
eISSN 2600-7738

contain information that can suggest some questions that need to be asked.
Therefore, the researcher needs to compile an adequate amount of problem

questions that are being used to practice problem-solving among novice
programmers. The documents being reviewed are searched from practical lab

sheets and assessment questions archives. The contents are limited to the
fundamentals of programming, specifically the simple input-output and

arithmetic functions. The review aims to analyse the problems to discover the
suitable scientific instructions and inquiries that can be produced for each
problem. In each of the problems, the inputs, outputs, and processes are

identified to enable instructions and inquiries to be deduced. These inquiries
are recorded and validated in the open-ended surveys.

3.3 Phase 3: Open-ended survey
The open-ended survey is done to validate the instructions and

inquiries constructed for the application after the document review. These
items are developed to be the general scientific instructions and inquiries
which are expected to apply to most of the basic introductory programming

problems. The purpose of the open-ended survey is to clarify if the items
developed during the document review are valid and reliable, at the same time

it also allows respondents to express comments and suggestions in their own
words (Glazier et al., 2021). In the open-ended survey, the researcher will list

down all the developed items to seek expert lecturers’ consent. At each item,
respondents are given some space to give their comments and suggestions.
Other input items are also expected from the expert lecturers to produce a

comprehensive set of instructions and inquiries that fit most programming
problems.

4.0 Results and discussion
The requirement elicitation process has provided some information and

led to the elicitation of the functional requirement for this problem-solving
application. The findings are discussed according to each phase.

4.1 Semi-structured interview finding

The interview sessions were conducted separately among the expert
lecturers. The interview finding of the students’ normal practice and

difficulties in problem-solving is summarized in Table 1. The table shows the
responses of five respondents denoted by R1, R2, R3, R4 and R5. Five

dominant practices (P1 – P5) from the responses have been identified as listed
in the table. The check (√) symbol denotes that the item was from the
corresponding respondent, meanwhile, the cross (X) symbol denotes that the

item was not from the corresponding respondent.

Functional Requirements of a C-Programming Problem-Solving Application

Politeknik & Kolej Komuniti Journal of Life Long Learning, Vol.5, No.1, 2021
eISSN 2600-7738

Table 1: Interview findings of students’ normal practice in problem-solving

No. Students’ Normal Practice R1 R2 R3 R4 R5

P1 Search for codes from the internet to solve
programming problems.

√ √ √ √ √

P2 Copy friends’ answers. √ √ √ √ √

P3 Modify code example. √ √ √ √ √

P4 Extract data from problems. √ X X √ X

P5 Produce the IPO chart before coding. √ X X √ X

From this interview finding, the researchers have found some

similarities in the respondents' responses. Based on the findings, the
problem-solving process is skipped when the students try to copy codes from

the internet or their friends. Modifying code examples also is not a part of the
problem-solving steps that they need to undergo. The respondents were all

agree that only a few students undergo the problem-solving steps by
performing the solution planning and extracting out the IPO before coding the
program. These findings show that the problem-solving skill among novice

programmers is unsatisfactory. Therefore, the researcher concludes that CT
is not well practiced among the novices which contribute to difficulties in the

problem-solving process.
Table 2 summarizes eight suggested elements (E1-E8) by the five

respondents for the application requirements to assist students in performing
problem-solving. These elements are mostly in line with the suggested
elements that the researchers already outlined for the third topic of the

interview. Therefore, it also shows the accordance of the respondents to
suggested elements of the literature reviews which are the CT, IPO and the

use of instructions and inquiries. The table shows whether the element is
agreed upon and suggested by the respondents denoted by the check (√)

symbol. Meanwhile, the cross (X) symbol denotes that the respondents did
not suggest the element.

Table 2: Suggested elements for a problem-solving application

No. Problem-solving Elements R1 R2 R3 R4 R5

E1 IPO chart to guide solution planning √ √ √ √ √
E2 CT element in extracting data from problems √ √ √ √ √

E3 Use inquiries and scientific instructions √ √ √ √ √
E4 Identify input and output variables √ √ √ √ √
E5 Identify involved processes and formulas √ √ √ √ √

E6 Identify any conditional statement X √ √ X √
E7 Identify any repetition statement X √ √ X √

E8 Identify any conditional status X √ X X √

Based on this finding, the use of an IPO chart is agreed upon by all

respondents as suggested by Kwon (2017). All respondents suggested that the

use of an IPO chart be highlighted during the process to help in solution
planning. All respondents also agreed with the implementation of CT in

problem-solving to extract data from problems as suggested by Moon et al.
(2020). They agreed that the extraction of data can be done by using scientific

instructions and inquiries as suggested by Svensson (2020). These findings

Functional Requirements of a C-Programming Problem-Solving Application

Politeknik & Kolej Komuniti Journal of Life Long Learning, Vol.5, No.1, 2021
eISSN 2600-7738

are supported with additional suggestions from the respondents that the
application must have the elements to help students identify input and output

variables with the processes and formulas. Respondents R2, R3 and R5 also
suggested the elements that help students with conditional and repetition

statements. However, only two of them, which are R2 and R5 suggested
proceeding with an element that helps identify the conditional status. Two

respondents, R1 and R4 suggested that the application only focuses on basic
arithmetic problem solving without conditional and repetition statements.

These findings show the importance of CT which is applied through

instructions and inquiries to guide the novices in identifying the variables and
related processes as parts of the task decomposition and abstraction

processes. Based on the experts' responses, the researchers determined that
seven elements out of eight (E1 – E7) will be the functional requirements of

the problem-solving application. Element E8 is excluded as it serves beyond
the basic elements of the introductory programming scope.

4.2 Document review finding

Twenty-five (25) problem-solving questions were compiled from various
sources as shown in Table 3. These questions are basic scientific and

engineering problems that require students to make a computer program to
display certain outputs based on certain inputs after certain processes are

done. To accomplish the task, the students need to discover the input and
output variables from the problem. They need to identify how the output can
be attained with scientific or arithmetic formula. These questions also require

the novice programmer to identify suitable data types for each of the input
and output variables that they have discovered.

Table 3: Sources of Problem-Solving Questions

No. Problems Questions Sources
Number of

Questions

1 Lab Sheets of Programming Fundamentals 10

2 Quiz Question 5
3 Test Question 5

4 Exercises 5

Based on suggested elements from the expert programming lecturer in

Table 2, several instructions and inquiries (Q1-Q10) were developed from
these sources. These instructions and inquiries are designed to extract data
and information from the problems as shown in Table 4.

Functional Requirements of a C-Programming Problem-Solving Application

Politeknik & Kolej Komuniti Journal of Life Long Learning, Vol.5, No.1, 2021
eISSN 2600-7738

Table 4: General Instructions and Inquiries for Problem-Solving

No. Instructions / Inquiries

Q1 What data will you get from the user? State the data type.

Q2 What should you calculate? State the data type.
Q3 What other data is needed? State the data type.

Q4 What other data is given? State the value. State the data type.
Q5 Give the formula to calculate the output.
Q6 Give a condition for a conditional action.

Q7 State an action if the condition is met.
Q8 State an action if the condition is not met.

Q9 Give a condition for a repetition action.
Q10 State a counter name if there is repetition.

These instructions and inquiries that have been constructed are
validated in the third phase of the study by using an open-ended survey
among the expert lecturers.

4.3 Open-ended survey finding
The open-ended survey was done to seek the expert programming

lecturers’ consensus with the instructions and inquiries (Q1-Q10) that have
been developed in Table 4 based on their suggestions in Table 2.

Table 5 shows the respondents’ consensus with instructions and
inquiries in the open-ended survey denoted by the check (√) symbol.
Meanwhile, the cross (X) symbol denotes that the respondent does not agree

with the item.

Table 5: Experts’ Consensus of the General Instructions and Inquiries for
Problem-Solving

No. Instructions / Inquiries R1 R2 R3 R4 R5

Q1 What data will you get from the user?
State the data type.

√ √ √ √ √

Q2 What should you calculate? State the data
type.

√ √ √ √ √

Q3 What other data is needed? State the data
type.

X √ √ X √

Q4 What other data is given? State the value.
State the data type.

√ √ √ √ √

Q5 Give the formula to calculate the output. √ √ √ √ √

Q6 Give a condition for a conditional action. √ √ √ √ √
Q7 State an action if the condition is met. √ √ √ √ √

Q8 State an action if the condition is not met. X √ √ √ √
Q9 Give a condition for a repetition action. √ √ √ √ √

Q10 State a counter name if there is repetition. √ √ √ √ √

Based on this open-ended survey finding, it is shown that all the
instructions and inquiries items developed are agreed upon by the expert

programming lecturers. Therefore, all the items are accepted to be included
in the application. This finding shows the importance of abstracting important

Functional Requirements of a C-Programming Problem-Solving Application

Politeknik & Kolej Komuniti Journal of Life Long Learning, Vol.5, No.1, 2021
eISSN 2600-7738

data by identifying inputs, processes and outputs of the problem which is a
part of the CT. However, some modifications need to be done based on some

comments and suggestions. Table 6 summarizes the comments and
suggestions (S1-S6) compiled from the open-ended survey among the expert

programming lecturers. The check (√) symbol denotes the respondent who
gives the suggestion and comment, while the NULL denotes that the

respondent did not suggest the suggestion or comment.

Table 6: Suggestions and comments

No. Instructions / Inquiries R1 R2 R3 R4 R5

S1 Enable a reset function for IPO chart - √ √ - √

S2 Give a clue or indication for every inquiry √ - √ √ √
S3 Instructions and inquiries are constructed

as simple sentences.
√ - - √ √

S4 Q3 is combined with Q4 to reduce the
number of questions

√ √ - √ -

S5 Provide drop-down menu answer for a data
type in Q1, Q2 and Q3

√ √ √ √ √

S6 Group the inquiries related to conditional
statement and repetition statement

respectively

√ √ √ √ √

Respondents R2, R3 and R5 suggested S1, enabling a reset function for

element E1, which is the IPO chart to allow students to amend the solution

that they have made. This suggestion is in line with the Semantic User
Interface Guideline (SUIG) developed by Naidu & Saad (2018) which suggested

that an application should help users to recognize, diagnose and recover from
errors. SUIG also suggested that an application should allow user controls

and freedom.
Respondents R1, R3, R4 and R5 suggested S2, giving a clue or

indication for every instruction and inquiry so that the students can give a

precise answer for each. The hints will help error prevention while giving
inputs as suggested by the SUIG. Respondents R1, R4 and R5 suggested S3,

that the instructions and inquiries are constructed in simple sentences. Long
sentences with excessive information and designs should be avoided as they

will confuse users (Naidu & Saad, 2018).
S4 is suggested by respondents R1, R2 and R4 to combine Q3 and Q4

to reduce the number of questions. All respondents suggested that the data

type asked in Q1, Q2 and Q3 are given a drop-down menu answer form as
stated in S5, so that the student can easily pick one answer from the available

C programming data type. They also suggested S6, that the inquiries related
to conditional statement and repetition statement are grouped, respectively.

These suggestions S3, S4, S5 and S6 are very important to be considered to
develop a simple application for the novices. They are in line with the SUIG
that suggested maintaining an aesthetic and minimalist design with the

efficiency of use.

Functional Requirements of a C-Programming Problem-Solving Application

Politeknik & Kolej Komuniti Journal of Life Long Learning, Vol.5, No.1, 2021
eISSN 2600-7738

5.0 Conclusion
The study was carried out to elicit the requirement of a problem-solving

application, as part of the application development process. This application
is targeting the introductory programming students who faced difficulties in

problem-solving. The use of three different qualitative methods in the
triangulation strategy has produced strong functional requirements for the

application. Experts in programming learning emphasized that the use of the
CT is crucial to guide the novices in problem-solving especially for the
introductory programming course. The application should be able to guide

users with the validated instructions and inquiries to identify input variables,
related processes and output variables. It also should display these

abstracted data in a form of an IPO chart to clarify the problem-solving
process. Therefore, the problem-solving application will be developed with two

important elements, which are the IPO Model and CT concepts represented in
scientific instructions and inquiries to solve various basic problems in an
introductory programming course.

6.0 Acknowledgment

The authors would like to acknowledge the Ministry of Higher
Education for the support in conducting this research. This research is

supported by Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak,
Malaysia. The authors also would like to express appreciation to the
Malaysian Polytechnic and all the involved lecturers for supporting this

research.

References
Bowen, G. A. (2009). Document analysis as a qualitative research method.

Qualitative Research Journal, 9(2), 27–40.

https://doi.org/10.3316/QRJ0902027

Chaka, C. (2020). Skills, Competencies and Literacies Attributed to

4IR/Industry 4.0: Scoping Review. International Federation of Library
Associations and Institutions, 46(4), 369–399.

https://doi.org/10.1177/0340035219896376

Chung, I. L., Chou, C. M., Hsu, C. P., & Li, D. K. (2016). A programming

learning diagnostic system using case-based reasoning method. 2016
IEEE International Conference on System Science and Engineering, ICSSE

2016, 1–4. https://doi.org/10.1109/ICSSE.2016.7551544

Evans, C. (2018). Analysing Semi-Structured Interviews Using Thematic

Analysis : Exploring Voluntary Civic Participation Analysing Semi-
Structured Interviews Using Thematic Analysis : Exploring Voluntary

Civic Participation. SAGE Research Methods Datasets.

Glazier, R. A., Boydstun, A. E., & Feezell, J. T. (2021). Self-coding: A method
to assess semantic validity and bias when coding open-ended responses.

Research and Politics, 8(3).

Functional Requirements of a C-Programming Problem-Solving Application

Politeknik & Kolej Komuniti Journal of Life Long Learning, Vol.5, No.1, 2021
eISSN 2600-7738

https://doi.org/10.1177/20531680211031752

Hashim, A. S., Ahmad, R., & Shahrul Amar, M. S. (2017). Difficulties in

Learning Structured Programming: A Case Study in UTP. Proceedings -
2017 7th World Engineering Education Forum, WEEF 2017- In Conjunction

with 7th Regional Conference on Engineering Education and Research in
Higher Education 2017, RCEE and RHEd 2017, 1st International STEAM

Education Conference, STEAMEC 201, 210–215.

https://doi.org/10.1109/WEEF.2017.8467151

Islam, N., Shafi Sheikh, G., Fatima, R., & Alvi, F. (2019). A Study of Difficulties
of Students in Learning Programming. Journal of Education & Social

Sciences, 7(2), 38–46. https://doi.org/10.20547/jess0721907203

Kohn, T. (2017). Variable evaluation: An exploration of novice programmers’
understanding and common misconceptions. Proceedings of the
Conference on Integrating Technology into Computer Science Education,

ITiCSE, 345–350. https://doi.org/10.1145/3017680.3017724

Kwon, K. (2017). Novice Programmer’s Misconception of Programming
Reflected on Problem-Solving Plans. International Journal of Computer

Science Education in Schools, 1(4).

https://doi.org/10.21585/ijcses.v1i4.19

Malik, S. I., Mathew, R., Al-Nuaimi, R., Al-Sideiri, A., & Coldwell-Neilson, J.
(2019). Learning problem-solving skills: Comparison of E-learning and M-
learning in an introductory programming course. Education and

Information Technologies, 24(5), 2779–2796.

https://doi.org/10.1007/s10639-019-09896-1

Moon, J., Do, J., Lee, D., & Choi, G. W. (2020). A conceptual framework for
teaching computational thinking in personalized OERs. Smart Learning

Environments, 7(1). https://doi.org/10.1186/s40561-019-0108-z

Naidu, T. J., & Saad, A. (2018). a Guideline for an Effective User Interface for

Educational Semantic Application. The International Journal of
Multimedia & Its Applications, 10(06), 71–89.

https://doi.org/10.5121/ijma.2018.10607

Ramdhani, M. A., Sa, D., Amin, A. S., & Aulawi, H. (2018). Requirements

Elicitation in Software Engineering. International Journal of Engineering

& Technology, 7, 772–775.

Riza, L. S., Handoko, B., Wihardi, Y., & Herbert. (2019). Computational story:
Learning media for algorithm and programming based on computational
thinking. International Journal of Engineering and Advanced Technology,

9(1), 2682–2685. https://doi.org/10.35940/ijeat.A9738.109119

Saad, A., & Dawson, C. (2018). Requirement elicitation techniques for an

improved case-based lesson planning system. Journal of Systems and
Information Technology, 20(1), 19–32. https://doi.org/10.1108/JSIT-12-

Functional Requirements of a C-Programming Problem-Solving Application

Politeknik & Kolej Komuniti Journal of Life Long Learning, Vol.5, No.1, 2021
eISSN 2600-7738

2016-0080

Saritepeci, M. (2020). Developing Computational Thinking Skills of High

School Students: Design-Based Learning Activities and Programming
Tasks. Asia-Pacific Education Researcher, 29(1), 35–54.

https://doi.org/10.1007/s40299-019-00480-2

Schoch, K. (2020). Chapter 16 Case Study Research. In The Scholar-

Practitioner’s Guide to Research Design (pp. 245–256).

Subramaniam, M., Azmi, A. N., & Noordin, M. K. (2020). Problem Solving

Skills Among Graduate Engineers: A Systematic Literature Review.
Journal of Computational and Theoretical Nanoscience, 17(2), 1044–1052.

https://doi.org/10.1166/jctn.2020.8766

Supriya, P., Salve, M., Syed, P., Samreen, N., & Khatri-valmik, P. N. (2018). A
Comparative Study on Software Development Life Cycle Models. 696–700.

Svensson, B. (2020). “Unplugged” Programming - A Way to Learn the Basics
of Programming. Proceedings of International Teacher Forum on

International Conference on Computational Thinking Education 2020, 21–

22.

Veerasamy, A. K., D’Souza, D., Lindén, R., & Laakso, M. J. (2019).
Relationship between perceived problem-solving skills and academic

performance of novice learners in introductory programming courses.
Journal of Computer Assisted Learning, 35(2), 246–255.

https://doi.org/10.1111/jcal.12326

Williamson, K. (2018). Chapter 13 Ethnographic research. In Research
Methods. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102220-

7.00013-3

Xinogalos, S. (2016). Designing and deploying programming courses:

Strategies, tools, difficulties and pedagogy. Education and Information
Technologies, 21(3), 559–588. https://doi.org/10.1007/s10639-014-

9341-9

